
Using Bazel for building and testing C++/Python projects

Stéphane Caron
February 20, 2024

Inria



Outline

• Features
• My experience
• Limitations
• Takeaways

Inria dev meeting : Using Bazel for building and testing C++/Python projects 1



Bazel

Bazel is a build and test system:

$ bazel build //some/path:target
$ bazel run //some/path:target
$ bazel test //some/...

Features:

• Fast: local and distributed caching, dependency analysis
• Multi-language: C++, Python, Java, Go, Android, iOS, ...
• Multi-platform: Linux, macOS, Windows
• Extensible: Starlark configuration language, a subset of Python

Inria dev meeting : Using Bazel for building and testing C++/Python projects 2



Workspace

Bazel reads a WORKSPACE file1 at the root of the repository:

workspace(name = "project_name")

http_archive(
name = "palimpsest",
sha256 = "244ffe888888bc12d6d5270020993a79e56ddb38f2beafa7647f17cf0192d4c9",
strip_prefix = "palimpsest-2.0.0",
url = "https://github.com/upkie/palimpsest/archive/refs/tags/v2.0.0.tar.gz",

)

git_repository(
name = "upkie_description",
remote = "https://github.com/upkie/upkie_description",
commit = "bb886d0f453c2d6822d431cfd42385bf06052b42",
shallow_since = "1687961108 +0200"

)

1This presentation is for Bazel < 7.0, with workspaces rather than modules.

Inria dev meeting : Using Bazel for building and testing C++/Python projects 3



Anatomy of a Bazel rule

Bazel reads rules from BUILD files in each directory, like so:

cc_binary(
name = "bullet_spine",
srcs = ["bullet_spine.cpp"],
data = ["@upkie_description"],
deps = [

"//upkie/config:layout",
"//upkie/observers",
"//upkie/utils:datetime_now_string",
"//upkie:version",
"@vulp//vulp/actuation:bullet_interface",
"@vulp//vulp/observation",
"@vulp//vulp/observation/sources",
"@vulp//vulp/spine",

],
)

Inria dev meeting : Using Bazel for building and testing C++/Python projects 4



Anatomy of a Bazel rule

Python targets work the same:

py_library(
name = "upkie_base_env",
srcs = ["upkie_base_env.py"],
deps = [

"//upkie/config",
"//upkie/observers/base_pitch",
"//upkie/utils:exceptions",
"//upkie/utils:nested_update",
"//upkie/utils:robot_state",
"@vulp//:python",

],
)

Inria dev meeting : Using Bazel for building and testing C++/Python projects 5



My experience with Bazel

• Had to use it anyway ;-)
• Strict hermeticity feels right
• Only dependency and target definitions in a project: feels very right2

• Cross-compilation toolchain was painless to use
• More complex custom use cases: if not already done somewhere, brace!
• Main drawback: Python dependencies from PyPI, coming up now...

2Looking at you, CMake...

Inria dev meeting : Using Bazel for building and testing C++/Python projects 6



PyPI rules

In the WORKSPACE file:

load("@rules_python//python:pip.bzl", "pip_parse")

pip_parse(
name = "pip_vulp",
requirements_lock = Label("//tools/workspace/pip_vulp:requirements_lock.txt"),

)

load("@pip_vulp//:requirements.bzl", "install_deps")
install_deps()

Install PyPI deps hermetically. Con #1: breaks some package distributions!

Inria dev meeting : Using Bazel for building and testing C++/Python projects 7



Example with msgpack on macOS

Con #2: a sneakier failure mode we ran into:

$ ./tools/bazel run //pink_balancer -- -c bullet
INFO: Analyzed target //pink_balancer:pink_balancer (56 packages loaded, 1507 targets configured).
INFO: Found 1 target...
Target //pink_balancer:pink_balancer up-to-date:
bazel-bin/pink_balancer/pink_balancer

INFO: Elapsed time: 14.460s, Critical Path: 0.14s
INFO: 1 process: 1 internal.
INFO: Build completed successfully, 1 total action
INFO: Running command line: bazel-bin/pink_balancer/pink_balancer -c bullet
Traceback (most recent call last):

File "bazel-out/darwin-opt/bin/pink_balancer/pink_balancer.runfiles/pink_balancer/pink_balancer/main.py", line 99, in <module>
spine = SpineInterface()

File "bazel-out/darwin-opt/bin/pink_balancer/pink_balancer.runfiles/vulp/vulp/spine/spine_interface.py", line 90, in __init__
self.__perf_checks()

File "bazel-out/darwin-opt/bin/pink_balancer/pink_balancer.runfiles/vulp/vulp/spine/spine_interface.py", line 97, in __perf_checks
raise PerformanceIssue("msgpack is running in pure Python")

vulp.spine.exceptions.PerformanceIssue: msgpack is running in pure Python

Inria dev meeting : Using Bazel for building and testing C++/Python projects 8



Takeaways

• Multi-language, multi-platform:
• C++ build and test:
• Cross-compilation:
• Python build and test:
• Python dependencies from PyPI3: —

3Now considering Conda...

Inria dev meeting : Using Bazel for building and testing C++/Python projects 9



Thank you for your attention!

Inria dev meeting : Using Bazel for building and testing C++/Python projects 9


