
Structural pattern matching in Python:
a reconstruction

Thierry Martinez, QAT/SED

Tuesday 19 March, Inria Paris developer meetup

Structural pattern matching in Python
Pattern matching originates from functional languages and has
been adopted across various programming languages.

It is a convenient construct for case analysis and data
destructuring.

match x:
case []:

print("Empty list")
case [Point(x, y)]:

print(f"Single point: {x}, {y}")
case [Point(x1, y1), Point(x2, y2)] if y1 = y2:

print(f"Horizontal line: {x1} - {x2}, {y1}")
case int(i):

print(f"Integer: {i}")
case _:

print("Something else")

Structural pattern matching in Python: history

I Proposal: 23 June 2020
Brandt Bucher et alii,
PEP 622 – Structural Pattern Matching

I First Specification: 12 September 2020
Brandt Bucher, Guido van Rossum,
PEP 634 – Structural Pattern Matching: Specification
“This PEP is a historical document.”

I Released: 4 October 2021, Python 3.10

I Current documentation (and specification):
Python documentation, ¶ 8.6. The match statement

https://peps.python.org/pep-0622/
https://peps.python.org/pep-0634/
https://docs.python.org/3/reference/compound_stmts.html#match

Motivation for a reconstruction
Pull Request on GitHub project graphix:
Refactor measure operator in a new pauli module #122
https://github.com/TeamGraphix/graphix/pull/122

match a, b:
case Axis.X, Axis.Y:

return Plane.XY
case Axis.Y, Axis.Z:

return Plane.YZ
case Axis.X, Axis.Z:

return Plane.XZ

In the pull-request discussion, @shinich1, the principal developer,
said: [...] it’s good to keep supporting 3.9.

Is there a refactor tool to translate match-blocks to code
compatible with Python prior to 3.10?

https://github.com/TeamGraphix/graphix/pull/122

A more fundamental motivation: curiosity!

I I haven’t found such a tool: the goal now is to build a custom
refactor tool.

I An opportunity to learn about the general frameworks for
building a refactor tool for Python.

I An opportunity to dive into the Python pattern-matching
specification.

General Frameworks for Refactoring Python Code

I Bowler (outdated):
I Built on fissix, a backport of lib2to3 removed from the

standard Python library in Python 3.10.
I Does not support the new PEG-based parser introduced in

3.10.

I LibCST, open-source project from Instagram:
I A Concrete Syntax Tree (CST) parser and serializer library for

Python.
I Loss-less parser: keeps all formatting details (comments,

whitespaces, parentheses, etc.).
I Aims to be as convenient as an Abstract Syntax Tree (AST).
I Functional flavour: mypy-compliant, structures are immutable

(functional update with node.with_changes(key=value)...

https://pybowler.io/
https://github.com/amyreese/fissix
https://github.com/Instagram/LibCST

match_transformer tool
https://github.com/thierry-martinez/match_transformer

I A refactor tool based on LibCST (keeps all formatting details).

I Translate all match-blocks into legacy code.

I Passes (almost) all the Python pattern-matching
test-suite:

I Dynamic parsing of match-blocks (via eval) is not supported.
I Traces are not preserved (tests that use _trace() method to

track line-numbers in traces are broken).

I No code duplication, preserves flow-control (break,
continue, return) and context (globals() and
locals()).

I Not much room for performance optimisation.

https://github.com/thierry-martinez/match_transformer

Generated code is mostly readable and can be used in
commits

match a, b:
case Axis.X, Axis.Y:
return Plane.XY
case Axis.Y, Axis.Z:
return Plane.YZ
case Axis.X, Axis.Z:
return Plane.XZ
if a == Axis.X and b == Axis.Y:

return Plane.XY
elif a == Axis.Y and b == Axis.Z:

return Plane.YZ
elif a == Axis.X and b == Axis.Z:

return Plane.XZ

LibCST and pretty-printing
LibCST is quite convenient for building syntax trees and
pretty-printing.
However, we should keep in mind that it is a Concrete Syntax
Tree, and the validators are not complete (though they are still
present).
>>> m = cst.Module([])
>>> m.code_for_node(
... cst.BinaryOperation(
... cst.Integer("1"), cst.Multiply(),
... cst.BinaryOperation(
... cst.Integer("2"), cst.Add(), cst.Integer("3"))))
'1 * 2 + 3'
>>> m.code_for_node(
... cst.BinaryOperation(
... cst.Integer("1"), cst.Multiply(),
... cst.BinaryOperation(
... cst.Integer("2"), cst.Add(), cst.Integer("3"),
... lpar=[cst.LeftParen()],
... rpar=[cst.RightParen()])))
'1 * (2 + 3)'

Pattern-matching allows dictionary key functional removal

match {"a": 1, "b": 2}:
case {"a": _, **d}:

assert d == {"b": 2}

Generated code:
d = [key: value for key, value in subject.items()

if key not in {"a"}]

Failed bindings are specified irrelevant... but tested
The documentation says:
Note: During failed pattern matches, some subpatterns may
succeed. Do not rely on bindings being made for a failed match.
Conversely, do not rely on variables remaining unchanged after a
failed match.

def test_patma_042(self):
x = 2
y = None
match x:

case (0 as z) |
(1 as z) |
(2 as z) if

z == x % 2:
y = 0

self.assertEqual(x, 2)
self.assertIs(y, None)
self.assertEqual(z, 2)

test = subject == 0 or
subject == 1 or
subject == 2

if test: z = subject
if test and z == x % 2:

del subject
del test
y = 0

else:
del test
del subject

Proper handling of side-effects

def test_patma_081(self):
x = 0
match x:

case 0 if not (x := 1):
y = 0

case (0 as z):
y = 1

self.assertEqual(x, 1)
self.assertEqual(y, 1)
self.assertEqual(z, 0)

subject = (x)
if subject == 0 and not (x := 1):

del subject
y = 0

elif subject == 0:
z = subject
del subject
y = 1

else: del subject

Sequences and mappings: do not believe the specification!
The specification says:
In pattern matching, a sequence is defined as one of the following:

I a class that inherits from collections.abc.Sequence

I a Python class that has been registered as collections.abc.Sequence
I a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
I a class that inherits from any of the above

In practice, match only tests for Py_TPFLAGS_SEQUENCE and
Py_TPFLAGS_MAPPING, that are mutually exclusive (but not
accessible in pure Python).
class M1(collections.UserDict, collections.abc.Sequence):

pass
match x:

case [*_]: # do not match
return "seq"

case {}:
return "map" # it is a map!

Use M1.__mro__ for depth-first search of collection class in
ancestors.

Conclusion

I LibCST is a convenient library for automating complex Python
code refactoring.

I We can use match-blocks in projects using Python versions
earlier than 3.10 and employ match_transformer for their
translation.

I Python has some very peculiar corner cases, even in the
newly-designed parts of the language!

I It would be interesting to have a tool in the opposite direction,
that transforms if-elif-else chains into match-blocks.

